Saturday, October 11, 2014

Unexpected CUI Identification

The cold section of the unit operates at varying temperatures below freezing, depending on the stage of the process. Impact tested carbon steel piping was utilized for the majority of the piping that had a design temperature greater than -50˚F. The original construction specifications did not require any 
coating for piping designed to continuously operate below 20 ˚F. It was found that this criteria is acceptable, provided that the line is continuously operated below freezing. This is based on visual inspection of lines that were frozen, as they did not exhibit any significant signs of corrosion. The unexpected piping that was found with corrosion problems was not correctly identified based on 
operating temperatures specified. 

The original line list identified the operating temperature for the flowing case and did not consider normal operating temperatures based on stagnate flow. The cases presented below should have been originally identified as having a CUI potential. However based on the listed operating conditions, these piping systems were not identified to have a CUI potential and were not included in the inspection strategy. The first two cases represent intermittent flow conditions while the third case represents a deadleg condition. In the below cases, none of the piping was originally coated due to being identified as normally operating below 20 ˚F. The first case was identified in the background section which resulted in a through wall failure of an ethylene vapor line. The original specifications of theplant identified the line as operating at –12 ˚F. At this temperature, the line was not flagged to be included in the CUI inspection strategy. After investigation, it was found that the operating temperature was correct, when the pressure control valve was open and flowing. The normal operation of the valve was to be in the closed position, creating a stagnate leg with no flow. Under these conditions the typical temperature of the line was only slightly below ambient. 

After removing the insulation at the location of the leak, it was found that the corrosion extended beyond the area of the leak and traveled further down the pipe back to the 14 inch line. The insulation was removed to the 14 inch line, where a severe area of corrosion was found on the branch connection, Figures 2 and 3. 

The 14 inch line was also identified as having an operating temperature of –12 ˚F. The 14 inch line was the supply line to the system relief devices and under normal conditions was completely
stagnate, Figure 4. It is only under a pressure relieving event that the actual operating temperature reaches the specified –12 ˚F. The insulation on the entire length of the 14 inch line was removed for inspection. It was found that the first signs of frost rings, indicating that the temperature was below freezing did not occur until within 7 feet of the 24 inch main header. The leak location was approximately 20 feet from the where the piping was normally operating at or below freezing conditions. Based on the nominal wall thicknesses of the piping, the corrosion rates are estimated to be in the range of 0.004in/yr to 0.011in/yr. The corrosion rates are roughly the same for the 14 inch line and the 1-1/2 inch line.

With the 1-1/2 inch line requiring a smaller wall thickness, it was more susceptible to developing a through wall failure. The second case of CUI deals with a 1-1/2 inch carbon steel makeup line to the ethylene refrigeration system. The line branches off of the suction to the ethylene product pumps and runs to the ethylene refrigeration accumulator. This line was originally identified as operating at -11 ˚F. This line is in operation once per week, for approximately 3 hours, it is stagnate the remainder of the time. The piping orientation is shown in Figure 9.
The original specification for this line was to utilize impact carbon steel to a manual globe valve where a specification break to stainless steel occurs. The intent was to minimize the carbon steel piping while keeping the globe valve within sight of the accumulator; however due to the location of the vessel, this required approximately 140 feet of carbon steel piping before the specification break to stainless. The initial visual inspection of this line found several areas of damaged/missing insulation. After removing most of the insulation, the piping was assessed by profile radiography to determine the remaining wall thickness without having to disturb the scale, Figures 7 and 8. There were several areas that were identified as having less than 1/32 inch remaining wall thickness.


The worst section of piping was located the furthest from the main header and within approximately 30 feet of the specification break. The line was found to be frozen and free of corrosion within 20 feet of the main header. The third case of CUI deals with a ¾ inch carbon steel bleeder off of a 12 inch acetylene converter feed main header. The bleeder piping and valve were located within 1 foot of the main header. The main header was originally identified as operating at 21˚F and normally is at this temperature. The CUI was caught on a visual inspection of the line, were the stem of the bleed valve that protruded through the insulation showed noticeable corrosion and was observed to be sweating. After removal of the insulation, it was found that the main header was frozen and free of corrosion. The ¾ inch piping was frozen next to the main header and showed signs of sweating back to the valve. The piping was assessed by profile radiography, where it was determined that the remaining wall thickness was approximately 1/16 inch localized in areas, Figure 11 . It was determined that the piping was acceptable to be in service up to the next scheduled outage. This line was hand cleaned and coated to arrest the corrosion and is scheduled for replacement with stainless steel. 

Source:http://www.allriskengineering.com/library_files/AIChe_conferences/AIChe_2008/data/papers/P108061.pdf

No comments:

Post a Comment

Happy Deepavali

The festival of light is here! May you be the happiest and may love be always with you. Happy Deepavali!